Computational model of airway narrowing: mature vs. immature rabbit.
نویسندگان
چکیده
Immature rabbits have greater maximal airway narrowing and greater maximal fold increases in airway resistance during bronchoconstriction than mature animals. We have previously demonstrated that excised immature rabbit lungs have more distensible airways, a lower shear modulus, and structural differences in the relative composition and thickness of anatomically similar airways. In the present study, we incorporated anatomic and physiological data for mature and immature rabbits into a computational model of airway narrowing. We then investigated the relative importance of maturational differences in these factors as determinants of the greater airway narrowing that occurs in the immature animal. The immature model demonstrated greater sensitivity to agonist, as well as a greater maximal fold increase in airway resistance. Exchanging values for airway compliance between the mature and immature models resulted in the mature model exhibiting a greater maximal airway response than the immature model. In contrast, exchanging the shear moduli or the composition of the airway wall relative to the airway size produced relatively small changes in airway reactivity. Our results strongly suggest that the mechanical properties of the airway, i.e., greater compliance of the immature airway, can be an important factor contributing to the greater airway narrowing of the immature animal.
منابع مشابه
Comparison of the shear modulus of mature and immature rabbit lungs.
Maximal airway narrowing during bronchoconstriction is greater in immature than in mature rabbits. At a given transpulmonary pressure (PL), the lung parenchyma surrounding the airway resists local deformation and provides a load that opposes airway smooth muscle shortening. We hypothesized that the force required to produce lung parenchymal deformation, quantified by the shear modulus, is lower...
متن کاملDifferences in airway structure in immature and mature rabbits.
Our laboratory has previously demonstrated that maximal bronchoconstriction produces a greater degree of airway narrowing in immature than in mature rabbit lungs (33). To determine whether these maturational differences could be related to airway structure, we compared the fraction of the airway wall occupied by airway smooth muscle (ASM) and cartilage, the proportion of wall area internal to A...
متن کاملComparison of elastic properties and contractile responses of isolated airway segments from mature and immature rabbits.
Immature rabbits have greater maximal airway narrowing with bronchoconstriction in vivo compared with mature animals. As isolated immature lungs have a lower shear modulus, it is unclear whether the greater airway narrowing in the immature lung is secondary to less tethering between the airways and the lung parenchyma or to differences in the mechanical properties of the mature and immature air...
متن کاملEffect of transpulmonary pressure on airway diameter and responsiveness of immature and mature rabbits.
We previously demonstrated that airway responsiveness is greater in immature than in mature rabbits; however, it is not known whether there are maturational differences in the effect of transpulmonary pressure (Ptp) on airway size and airway responsiveness. The relationship between Ptp and airway diameter was assessed in excised lungs insufflated with tantalum powder. Diameters of comparable in...
متن کاملAirway branching morphology of mature and immature rabbit lungs.
The scheme of Horsfield et al. for describing the pulmonary airway tree (J Appl Physiol 52: 21-26, 1982) catalogs each airway according to its order and the difference in order of its two daughters (denoted Delta). Although this scheme captures the natural asymmetry in the airway tree, it is still deterministic, because it assumes that all airways of a given order are the same; yet such variabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2002